Законы излучения абсолютно черного тела. Абсолютно черное тело Излучение абсолютно черного тела и его свойства

Управление образования Кировского района. Министерство общего и среднего образования

Муниципальное Образовательное Учреждение № 204

«Элитарная школа».

Направление научно-техническое.

Предмет физика.

Абсолютно черное тело

Исполнитель: ученик 11 класса Карпов Максим

Руководитель: Бондина Марина Юрьевна

Екатеринбург 2007

Введение стр.2

    Теория черного тела стр.5

    Практическая часть стр.15

Заключение стр.17

Литература стр.18

Введение

В конце XIX в. многие ученые считали, что развитие физики завершилось по следующим причинам:

1. Больше 200 лет существуют законы механики, теория всемирного тяготения, законы сохранения (энергии, импульса, момента импульса, массы и электрического заряда).

2. Разработана МКТ.

3. Подведен прочный фундамент под термодинамику.

4. Сформулирована Максвелловская теория электромагнетизма.

5. Релятивистский закон сохранения энергии – массы.

В конце XIX -- начале XX в. открыты В. Рентгеном - X-лучи (рентгеновские лучи), А. Беккерелем - явление радиоактивности, Дж. Томсоном - электрон. Однако классическая физика не сумела объяснить эти явления.

Теория относительности А. Эйнштейна потребовала коренного пересмотра понятии пространства и времени. Специальные опыты подтвердили справедливость гипотезы Дж. Максвелла об электромагнитной природе света. Можно было предположить, что излучение электромагнитных волн нагретыми телами обусловлено колебательным движением электронов. Но это предположение нужно было подтвердить сопоставлением теоретических и экспериментальных данных. Для теоретического рассмотрения законов излучений использовали модель абсолютно черного тела, т.е. тела, полностью поглощающего электромагнитные волны любой длины и, соответственно, излучающего все длины электромагнитных волн.

С явлением поглощения телами энергии я столкнулся, возвращаясь осенним вечером домой. В тот вечер было сыро, и я с трудом видел дорогу, по которой иду. А когда, через неделю выпал снег, то дорога была хорошо видна. Так я впервые столкнулся с явлением абсолютно черного тела, тела, которого не существует в природе, и меня это заинтересовало. А так как я долго искал интересующий меня материал, собирал его по кусочкам – я решил написать исследовательскую работу, в которой это все будет соединено и выстроено в логическом порядке. Так же для более удобного восприятия теоретической части мной приведены практические примеры опытов, на которых можно пронаблюдать за выше указанным явлением.

Изучая материалы по вопросу об отражении и поглощении световой энергии, я предположил, что абсолютно черное тело – это тело, которое поглощает всю энергию. Однако возможно ли такое на практике? Я думаю, не только мне показался этот вопрос интересным. Поэтому цель моей работы доказать, что излучение электромагнитных волн нагретыми телами обусловлено колебательным движением электронов. Но эта проблема актуальна так как об этом не написано в наших учебниках, мало в каких справочниках можно прочитать про абсолютно черное тело. Для этого я поставил перед собой несколько задач:

      найти как можно больше информации по этой проблеме;

      изучить теорию абсолютно черного тела;

      опытным путем подтвердить теоретические понятия и явления, приведенные в реферате;

Реферат состоит из следующих частей:

    введение;

    теория черного тела;

    практическая часть;

    заключение.

Теория черного тела

1. История изучения вопроса.

Классическая физика не смогла получить разумную формулу для спектральной плотности (эта формула легко проверяется: абсолютно чёрное тело – печь, ставят спектрометр, излучение в спектр разворачивается, и для каждой полоски спектра можно найти энергию в этом интервале длин волн). Классическая физика не смогла не только дать правильное значение функции, она не смогла дать даже разумное значение, а именно, получалось, что эта функция растёт с убыванием длины волны, а это просто бессмысленно, это означает, что любое тело в видимой области излучает, а в низких частотах ещё больше, и полная энергия излучения стремится к бесконечности. Значит, в природе есть явления, которые невозможно описать законами классической физике.

В конце XIX века выявилась несостоятельность попыток создать теорию излучения черного тела на основе законов классической физики. Из законов классической физики следовало, что вещество должно излучать электромагнитные волны при любой температуре, терять энергию и понижать температуру до абсолютного нуля. Иными словами. тепловое равновесие между веществом и излучением было невозможно. Но это находилось в противоречии с повседневным опытом.

Более детально это можно пояснить следующим образом. Существует понятие абсолютно черного тела - тела, поглощающего электромагнитное излучение любой длины волны. Спектр его излучения определяется его температурой. В природе абсолютно черных тел нет. Наиболее точно абсолютно черному телу соответствует замкнутое непрозрачное полое тело с отверстием. Любой кусок вещества при нагревании светится и при дальнейшем повышении температуры становится сначала красным, а затем - белым. Цвет от вещества почти не зависит, для абсолютно черного тела он определяется исключительно его температурой. Представим такую замкнутую полость, которая поддерживается при постоянной температуре и которая содержит материальные тела, способные испускать и поглощать излучения. Если температура этих тел в начальный момент отличалась от температуры полости, то со временем система (полость плюс тела) будет стремиться к термодинамическому равновесию, которое характеризуется равновесием между поглощаемой и измеряемой в единицу времени энергией

Г.Кирхгоф установил, что это состояние равновесия характеризуется определенным спектральным распределением плотности энергии излучения, заключенного в полости, а также то, что функция, определяющая спектральное распределение (функция Кирхгофа), зависит от температуры полости и не зависит ни от размеров полости или ее форм, ни от свойств помещенных в нее материальных тел. Так как функция Кирхгофа универсальна, т.е. одинакова для любого черного тела, то возникло предположение, что ее вид определяется какими-то положениями термодинамики и электродинамики. Однако попытки такого рода оказались несостоятельными. Из закона Д.Рэлея следовало, что спектральная плотность энергии излучения должна монотонно возрастать с увеличением частоты, но эксперимент свидетельствовал об ином: вначале спектральная плотность с увеличением частоты возрастала, а затем падала.

Решение проблемы излучения черного тела требовало принципиально нового подхода.

Он был найден М.Планком.

Планк в 1900 г. сформулировал постулат, согласно которому вещество может испускать энергию излучения только конечными порциями, пропорциональными частоте этого излучения. Данная концепция привела к изменению традиционных положений, лежащих в основе классической физики. Существование дискретности действия указывало на взаимосвязь между локализацией объекта в пространстве и времени и его динамическим состоянием. Л. де Бройль подчеркивал, что "с точки зрения классической физики эта связь представляется совершенно необъяснимой и гораздо более непонятной по следствиям, к которым она приводит, чем связь между пространственными переменными и временем, установленная теорией относительности. Квантовой концепции в развитии физики было суждено сыграть огромную роль.

Итак, был найден новый подход к объяснению природы черного тела (в виде квантовой концепции).

2. Поглощательная способность тела.

Для описания процесса поглощения телами излучения введем спектральную поглощательную способность тела. Для этого, выделив узкий интервал частот от до , рассмотрим поток излучения , который падает на поверхность тела. Если при этом часть этого потока поглощается телом, то поглощательную способность тела на частоте определим как безразмерную величину

характеризующую долю падающего на тело излучения частоты , поглощенную телом.

Опыт показывает, что любое реальное тело поглощает излучение различных частот по разному в зависимости от его температуры. Поэтому спектральная поглощательная способность тела является функцией частоты , вид которой изменяется при изменении температуры тела .

По своему определению поглощательная способность тела не может быть больше единицы. При этом тело, у которого поглощательная способность меньше единицы и одинакова по всему диапазону частот, называют серым телом.

Особое место в теории теплового излучения занимает абсолютно черное тело. Так Г.Кирхгоф назвал тело, у которого на всех частотах и при любых температурах поглощательная способность равна единице. Реальное тело всегда отражает часть энергии падающего на него излучения (рис. 1.2). Даже сажа приближается по свойствам к абсолютно черному телу лишь в оптическом диапазоне.

1 - абсолютно черное тело; 2 - серое тело; 3 - реальное тело

Абсолютно черное тело является эталонным телом в теории теплового излучения. И, хотя в природе нет абсолютно черного тела, достаточно просто реализовать модель, для которой поглощательная способность на всех частотах будет пренебрежимо мало отличаться от единицы. Такую модель абсолютно черного тела можно изготовить в виде замкнутой полости (рис. 1.3), снабженной малым отверстием, диаметр которого значительно меньше поперечных размеров полости. При этом полость может иметь практически любую форму и быть изготовленной из любого материала.

Малое отверстие обладает свойством почти полностью поглощать падающее на него излучение, причем с уменьшением размера отверстия его поглощательная способность стремится к единице. Действительно, излучение через отверстие попадает на стенки полости, частично поглощаясь ими. При малых размерах отверстия луч должен претерпеть множество отражений, прежде чем он сможет выйти из отверстия, то есть, формально, отразиться от него. При многократных повторных переотражениях на стенках полости излучение, попавшее в полость, практически полностью поглотится.

Отметим, что если стенки полости поддерживать при некоторой температуре , то отверстие будет излучать, и это излучение с большой степенью точности можно считать излучением абсолютно черного тела, имеющего температуру . Исследуя распределение энергии этого излучения по спектру oC.Ленгли, Э.Прингсгейм, О.Люммер, Ф.Курлбаум и др.), можно экспериментально определить испускательные способности абсолютно черного тела и . Результаты таких экспериментов при различных значениях температуры приведены на рис. 1.4.

Из этих рассуждений следует, что поглощательная способность и цвет тела взаимосвязаны.

3. Закон Кирхгофа.

Закон Кирхгофа. Между испускательными и поглощательными свойствами любого тела должна существовать связь. Ведь в опыте с равновесным тепловым излучением (рис. 1.1) равновесие в системе может установиться только в том случае, если каждое тело будет излучать в единицу времени столько же энергии, сколько оно поглощает. Это означает, что тела, интенсивнее поглощающие излучение какой-либо частоты, будут это излучение интенсивнее и испускать.

Поэтому, в соответствии с таким принципом детального равновесия, отношение испускательной и поглощательной способностей одинаково для всех тел в природе, включая абсолютно черное тело, и при данной температуре является одной и той же универсальной функцией частоты (длины волны).

Этот закон теплового излучения, установленный в 1859 г. Г.Кирхгофом при рассмотрении термодинамических закономерностей равновесных систем с излучением, можно записать в виде соотношения

где индексы 1, 2, 3... соответствуют различным реальным телам.

Из закона Кирхгофа следует, что универсальные функции и есть спектральные испускательные способности и абсолютно черного тела по шкале частот или длин волн, соответственно. Поэтому связь между ними определяется формулой .

Излучение абсолютно черного тела имеет универсальный характер в теории теплового излучения. Реальное тело излучает при любой температуре всегда меньше энергии, чем абсолютно черное тело. Зная испускательную способность абсолютно черного тела (универсальную функцию Кирхгофа) и поглощательную способность реального тела, из закона Кирхгофа можно определить энергию, излучаемую этим телом в любом диапазоне частот или длин волн.

Значит эта энергию, излучаемая телом, определяется как разность между испускательной возможностью черного тела и поглощательной возможностью реального тела.

4. Закон Стефана-Больцмана

Закон Стефана-Больцмана. Экспериментальные (1879 г. Й.Стефан) и теоретические (1884 г. Л.Больцман) исследования позволили доказать важный закон теплового излучения абсолютно черного тела. Этот закон утверждает, что энергетическая светимость абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры, то есть

Этот закон часто используется в астрономии при определении светимости звезды по её температуре. Для этого необходимо перейти от плотности излучения к наблюдаемой величине - потоку. Формула для интегрального по спектру потока излучения будет выведена в третьей главе.

По современным измерениям постоянная Стефана-Больцмана Вт/(м 2 (К4).

Для реальных тел закон Стефана-Больцмана выполняется лишь качественно, то есть с ростом температуры энергетические светимости всех тел увеличиваются. Однако, для реальных тел зависимость энергетической светимости от температуры уже не описывается простым соотношением (1.7), а имеет вид

Коэффициент в (1.8), всегда меньший единицы, можно назвать интегральной поглощательной способностью тела. Значения , в общем случае зависящие от температуры, известны для многих технически важных материалов. Так, в достаточно широком диапазоне температур для металлов , а для угля и окислов металлов .

Для реальных нечерных тел можно ввести понятие эффективной радиационной температуры , которая определяется как температура абсолютно черного тела, имеющего такую же энергетическую светимость, что и реальное тело. Радиационная температура тела всегда меньше истинной температуры тела . Действительно, для реального тела . Отсюда находим, что , то есть , так как у реальных тел .

Радиационную температуру сильно нагретых раскаленных тел можно определить с помощью радиационного пирометра (рис. 1.5), в котором изображение достаточно удаленного нагретого источника И проецируется с помощью объектива на приемник П так, чтобы изображение излучателя полностью перекрывало приемник. Для оценки энергии излучения, попавшего на приемник, обычно используются металлические или полупроводниковые болометры или термоэлементы. Действие болометров основано на изменении электрического сопротивления металла или полупроводника при изменении температуры, вызванном поглощением падающего потока излучения. Изменение температуры поглощающей поверхности термоэлементов приводит к появлению в них термо-ЭДС.

Показание прибора, подсоединенного к болометру или термоэлементу, оказывается пропорциональным энергии излучения, попавшей на приемник пирометра. Проградуировав предварительно пирометр по излучению эталона абсолютно черного тела при различных температурах, можно по шкале прибора измерять радиационные температуры различных нагретых тел.

Зная интегральную поглощательную способность материала излучателя, можно перевести измеренную радиационную температуру излучателя в его истинную температуру по формуле

В частности, если радиационный пирометр покажет температуру К при наблюдении раскаленной поверхности вольфрамового излучателя (), то ее истинная температура К.

Отсюда можно сделать вывод, что светимость любого тела можно определить по его температуре.

5. Закон смещения Вина

В 1893 г. немецкий физик В.Вин теоретически рассмотрел термодинамический процесс сжатия излучения, заключенного в полости с идеально зеркальными стенками. С учетом изменения частоты излучения за счет эффекта Допплера при отражении от движущегося зеркала Вин пришел к выводу, что испускательная способность абсолютно черного тела должна иметь вид

(1.9)

Здесь - некоторая функция, конкретный вид которой термодинамическими методами установить нельзя.

Переходя в этой формуле Вина от частоты к длине волны, в соответствии с правилом перехода (1.3), получим

Как видно, в выражение для испускательной способности температура входит лишь в виде произведения . Уже это обстоятельство позволяет предсказать некоторые особенности функции . В частности, эта функция достигает максимума на определенной длине волны , которая при изменении температуры тела изменяется так, чтобы выполнялось условие: .

Таким образом, В.Вин сформулировал закон теплового излучения, согласно которому длина волны , на которую приходится максимум испускательной способности абсолютно черного тела, обратно пропорциональна его абсолютной температуре. Этот закон можно записать в виде

Значение константы в этом законе, полученное из экспериментов, оказалось равным м мК.

Закон Вина называют законом смещения, подчеркивая тем самым, что при повышении температуры абсолютно черного тела положение максимума его испускательной способности смещается в область коротких длин волн. Результаты экспериментов, приведенные на рис. 1.4, подтверждают этот вывод не только качественно, но и количественно, строго в соответствии с формулой (1.11).

Для реальных тел закон Вина выполняется лишь качественно. С ростом температуры любого тела длина волны, вблизи которой тело излучает больше всего энергии, также смещается в сторону коротких длин волн. Это смещение, однако, уже не описывается простой формулой (1.11), которую для излучения реальных тел можно использовать только в качестве оценочной.

Из закона смещения Вина получается, что температура тела и длина волны его испускательной способности взаимосвязаны.

6. Формула Рэлея-Джинса

В диапазоне предельно малых частот,

именуемом областью Рэлея–Джинса, плотность энергии пропорциональна температуре T и квадрату частоты ω:

На рис.2.1.1 эта область помечена РД. Формула Рэлея-Джинса может быть выведена чисто

классическим путём, без привлечения квантовых представлений. Чем выше температура чёрного тела, тем шире диапазон частот, в котором справедлива эта формула. Она объясняется в классической теории, но её нельзя распространять на высокие частоты (пунктирная линия на рис.2.1.1), так как просуммированная по спектру плотность энергии в этом случае бесконечно велика:

Эту особенность закона Рэлея-Джинса называют «ультрафиолетовой катастрофой».

Из формулы Рэлея-Джинса видно, что температура тела не распространяется на высокие частоты.

7. Формула Вина

В диапазоне больших частот (область В на рис.2.1.1) справедлива формула Вина:

Хорошо видно, что правая часть меняется немонотонно. Если частота не слишком велика, то преобладает множитель ω3 и функция Uω возрастает. По мере увеличения частоты рост Uω замедляется, она проходит через максимум, а затем убывает за счёт экспоненциального множителя. Наличие максимума в спектре излучения отличает виновский диапазон от области Рэлея-Джинса.

Чем больше температура тела, тем выше граничная частота, начиная с которой выполняется формула Вина. Величина параметра a в экспоненте правой части зависит от выбора единиц, в которых измеряются температура и частота.

А значит, формула Вина требует привлечения квантовых представлений о природе света.

Таким образом я рассмотрел поставленные перед собой вопросы. Нетрудно заметить, что существующие законы физики XIX в. были поверхностны, они не связывали воедино все характеристики (длина волны, температура, частота и т.д.) физических тел. Все вышеперечисленные законы дополняли друг друга, но для полного понимания данного вопроса необходимо было привлечение квантовых представлений о природе света.

Практическая часть

Как я уже неоднократно говорил, явление абсолютно черного тела на сегодняшний день не существует на практике, во всяком случае мы не можем создать и увидеть его. Однако мы можем провести ряд опытов, которые демонстрируют выше преведенные теоретические выкладки.

Может ли белое быть чернее черного? Начнем с совсем простого наблюдения. Если положить рядом листки белой и черной бумаги и создать в комнате темноту. Ясно, что тогда ни одного листка вы не увидите, то есть оба они будут одинаково черными. Казалось бы, ни при каких условиях белая бумага не может быть чернее черной. И все же это не так. Тело, которое при любой температуре полностью поглощает падающее на него излучение любой частоты, называется абсолютно черным. Понятно, что это - идеализация: в природе абсолютно черных тел нет. Тела, которые мы обычно называем черными (сажа, копоть, черные бархат и бумага и т.д.), на самом деле серые, т.е. они частично поглощают, а частично рассеивают падающий на них свет.

Оказывается, вполне хорошей моделью абсолютно черного тела может служить сферическая полость с небольшим отверстием. Если диаметр отверстия не превышает 1/10 диаметра полости, то (как показывает соответствующий расчет) вошедший в отверстие световой пучок сможет выйти из его обратно лишь после многократных рассеяний или отражений от разных точек стенки полости. Но при каждом "соприкосновении" пучка со стенкой энергия света частично поглощается, так что доля выходящего обратно из отверстия излучения ничтожно мала. Поэтому можно полагать, что отверстие полости практически полностью поглощает свет любой длины волны, как и абсолютно черное тело. А сам прибор для опыта можно сделать, например, так. Из картона нужно склеить коробку размером примерно 100Х100Х100 мм с открывающейся крышкой. Изнутри коробку нужно оклеить белой бумагой, а снаружи - покрасить черной тушью, гуашью или, что еще лучше, оклеить бумагой от фотопакетов. В крышке нужно проделать отверстие диаметром не более 10 мм. Показывая опыт, надо осветить крышку коробки настольной лампой, тогда отверстие будет выглядеть более черным, чем черная крышка.

Для того чтобы просто пронаблюдать явление, можно поступить еще проще (но менее интересно). Нужно взять белую фарфоровую чашку и закрой ее бумажной черной крышкой с небольшим отверстием - эффект будет практически таким же.

Обратите внимание, что если смотреть с улицы на окна в яркий солнечный день, то они кажутся нам темными.

Кстати, профессор Принстонского университета Эрик Роджерс, написавший изданную не только у нас "Физику для любознательных", дал своеобразное "описание" абсолютно черного тела: "Никакая черная краска на собачьей конуре не выглядит чернее открытой для собаки дверцы".

Сняв с двух одинаковых пустых консервных банок наклейки и закоптив или закрасив черной краской одну банку, другую оставив светлой, налив в обе банки горячую воду и посмотрев, в какой из них вода остынет быстрее (опыт можно проводить и в темноте); вы пронаблюдаете явление теплового излучения.

Так же за явлением теплового излучения можно пронаблюдать, смотря за работой комнатного электрического нагревателя, состоящего из накаливаемой спирали и хорошо полированной вогнутой металлической поверхности.

Любопытно, что:

    связь между световыми и тепловыми лучами была известна со времен античности. Более того, слово "фокус" означает на латинском языке "огонь", "очаг", что в применении к вогнутым зеркалам и линзам свидетельствует о первоочередном внимании к концентрации тепловых, а не световых лучей. Среди многих экспериментов XVI-XVIII веков особо выделяется опыт, проведенный Эдмом Мариоттом, в котором порох воспаменялся тепловыми лучами, отраженными вогнутым зеркалом, изготовленным из... льда.

    Уильям Гершель, знаменитый открытием планеты Уран, обнаружив в спектре Солнца невидимые - инфракрасные - лучи, был так поражен, что двадцать лет хранил об этом молчание. А вот в том, что Марс обитаем и населен, он не сомневался...

    после того как спектральный анализ показал наличие в атмосфере Солнца многих химических элементов, в том числе и золота, один банкир сказал Кирхгофу: "Ну и что толку от вашего солнечного золота? Ведь его все равно не доставить на Землю!" Прошло несколько лет, и Кирхгоф получил из Англии золотую медаль и премию наличными деньгами за свои замечательные исследования. Показав эти деньги банкиру, он сказал: "Посмотрите, а мне все-таки удалось, в конце концов, заполучить немного золота с Солнца".

    на могиле Фраунгофера, открывшего темные линии в спектре Солнца и изучавшего спектры планет и звезд, признательные соотечественники воздвигли памятник с надписью "Приблизил звезды".

Приведенные мной практические примеры подтверждают выкладки теоретической части.

Заключение

Я рассмотрел поставленные перед собой вопросы. Нетрудно заметить, что существующие законы физики XIX в. были поверхностны, они не связывали воедино все характеристики (длина волны, температура, частота и т.д.) физических тел. Все вышеперечисленные законы дополняли друг друга, но для полного понимания данного вопроса необходимо было привлечение квантовых представлений о природе света. Создание квантовой теории позволило объяснить многие явления, такие как явление абсолютно черного тела, т.е. тела, полностью поглощающего электромагнитные волны любой длины и, соответственно, излучающего все длины электромагнитных волн. Также позволило объяснить взаимосвязь поглощательной способности и цвета тела, зависимость светимости тела от его температуры. Впоследствии эти явления были объяснены и классической физикой. Я выполнил цель моей работы – ознакомил с проблемой абсолютно черного тела всех желающих. Для этого я выполнил следующие задачи:

      нашел как можно больше информации по этой проблеме;

      изучил теорию абсолютно черного тела;

      опытным путем подтвердил теоретические понятия и явления, приведенные в реферате;

Для теоретического рассмотрения законов излучений использовали модель абсолютно черного тела, т.е. тела, полностью поглощающего электромагнитные волны любой длины и, соответственно, излучающего все длины электромагнитных волн.

Список использованной литературы:

    Мякишев Г. Я., Физика 11, М., 2000.

    Касьянов В. А., Физика 11, М., 2004.

    Ландсберг Г. С., Элементарный учебник физики том III, М., 1986.

    http://ru.wikipedia.org/wiki/Абсолютно_черное_тело .абсолютно

    Парадоксально. Черная дыра ведет себя, как тело с температурой, равной абсолютному нулю... , потому что с помощью черной дыры... Таким образом, черная дыра излучает как идеальное черное тело (неожиданно реализованное...

Излучение нагретого металла в видимом диапазоне

Абсолютно чёрное тело - физическая идеализация, применяемая втермодинамике , тело, поглощающее всё падающее на негоэлектромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметьцвет .Спектр излучения абсолютно чёрного тела определяется только еготемпературой .

Важность абсолютно черного тела в вопросе о спектре теплового излучения любых (серых и цветных) тел вообще, кроме того, что оно представляет собой наиболее простой нетривиальный случай, состоит еще и в том, что вопрос о спектре равновесного теплового излучения тел любого цвета и коэффициента отражения сводится методами классической термодинамики к вопросу об излучении абсолютно черного (и исторически это было уже сделано к концу XIX века, когда проблема излучения абсолютно черного тела вышла на первый план).

Наиболее чёрные реальные вещества, например, сажа , поглощают до 99 % падающего излучения (то есть имеютальбедо , равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди телСолнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладаетСолнце .

Термин был введён Густавом Кирхгофомв1862 году. Практическая модель

Модель абсолютно чёрного тела

Абсолютно чёрных тел в природе не существует, поэтому в физике для экспериментов используется модель . Она представляет собой замкнутую полость с небольшим отверстием. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Но при нагревании этой полости у неё появится собственное видимое излучение. Поскольку излучение, испущенное внутренними стенками полости, прежде, чем выйдет (ведь отверстие очень мало), в подавляющей доле случаев претерпит огромное количество новых поглощений и излучений, то можно с уверенностью сказать, что излучение внутри полости находится втермодинамическом равновесии со стенками. (На самом деле, отверстие для этой модели вообще не важно, оно нужно только чтобы подчеркнуть принципиальную наблюдаемость излучения, находящегося внутри; отверстие можно, например, совсем закрыть, и быстро приоткрыть только тогда, когда равновесие уже установилось и проводится измерение).

Законы излучения абсолютно чёрного тела Классический подход

Изначально к решению проблемы были применены чисто классические методы, которые дали ряд важных и верных результатов, однако полностью решить проблему не позволили, приведя в конечном итоге не только к резкому расхождению с экспериментом, но и к внутреннему противоречию - так называемой ультрафиолетовой катастрофе .

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики .

Первый закон излучения Вина

В 1893 году Вильгельм Вин , воспользовавшись, помимо классической термодинамики, электромагнитной теорией света, вывел следующую формулу:

    u ν - плотность энергии излучения

    ν - частота излучения

    T - температура излучающего тела

    f - функция, зависящая только от частоты и температуры. Вид этой функции невозможно установить, исходя только из термодинамических соображений.

Первая формула Вина справедлива для всех частот. Любая более конкретная формула (например, закон Планка) должна удовлетворять первой формуле Вина.

Из первой формулы Вина можно вывести закон смещения Вина (закон максимума) изакон Стефана-Больцмана , но нельзя найти значения постоянных, входящих в эти законы.

Исторически именно первый закон Вина назывался законом смещения, но в настоящее время термином «закон смещения Вина » называют закон максимума.

Абсолютно черное тело - это ментальный физический идеализированный объект. Интересно, что оно вовсе не обязательно должно быть черным на самом деле. Здесь дело в другом.

Альбедо

Все мы помним (или, по крайней мере, должны были бы помнить) из школьного курса физики, что понятие "альбедо" подразумевает под собой способность поверхности какого-либо тела отражать свет. Так, например, снежные покровы ледяных шапок нашей планеты способны отражать до 90% падающего на них солнечного света. Это значит, что они характеризуются высоким альбедо. Неудивительно, что сотрудники полярных станций нередко вынуждены работать в солнцезащитных очках. Ведь смотреть на чистый снег - почти то же, что и рассматривать невооруженным глазом Солнце. В этом отношении рекордную отражательную способность во всей Солнечной системе имеет спутник Сатурна Энцелад, который почти сплошь состоит из водяного льда, имеет белый цвет и отражает практически все излучение, падающее на его поверхность. С другой стороны, такое вещество, как сажа, обладает альбедо меньше 1%. То есть оно поглощает около 99% электромагнитного излучения.

Абсолютно черное тело: описание

Здесь мы подходим к самому главному. Наверняка читатель догадался, что абсолютно черное тело представляет из себя объект, поверхность которого способна поглощать абсолютно все падающее на него излучение. Вместе с тем, это вовсе не означает, что такой объект будет невидим и не сможет в принципе излучать свет. Нет, не стоит путать его с черной дырой. Он может обладать цветом и даже быть весьма хорошо видимым, однако излучение абсолютно черного тела всегда будет определяться его собственной температурой, но не отраженным светом. Кстати, здесь учитывается не только спектр, видимый человеческим глазом, но и ультрафиолетовое, инфракрасное излучение, радиоволны, рентгеновские лучи, гамма-излучение и так далее. Как уже было сказано, абсолютно черное тело не существует в природе. Однако его характеристикам в нашей звездной системе наиболее полно отвечает Солнце, излучающее, но почти не отражающее свет (исходящий от других звезд).

Лабораторная идеализация

Попытки вывести объекты, абсолютно не отражающие свет, предпринимались уже с конца XIX века. Собственно, эта задача стала одной из предпосылок к возникновению квантовой механики. Прежде всего, важно отметить, что любой фотон (или любая другая частица электромагнитного излучения), поглощенный атомом, тут же им испускается и поглощается соседним атомом, и снова испускается. Этот процесс будет продолжаться до тех пор, пока не будет достигнуто состояние равновесного насыщения в теле. Однако при нагревании абсолютно черного тела до подобного состояния равновесия интенсивность испускаемого им света уравнивается с интенсивностью поглощаемого.

В научной среде физиков проблема возникает при попытке подсчитать, какова же должна быть эта энергия излучения, которая сохраняется внутри черного тела в равновесии. И тут вытекает удивительный момент. Распределение энергии в спектре абсолютно черного тела в состоянии равновесия означает буквальную бесконечность энергии излучения внутри нее. Эта проблема была названа ультрафиолетовой катастрофой.

Решение Планка

Первым, кому удалось найти приемлемое решение этой задачи, стал немецкий физик Макс Планк. Он предположил, что любое излучение поглощается атомами не непрерывно, а дискретно. То есть порциями. Позднее такие порции и были названы фотонами. Более того, радиомагнитные волны могут поглощаться атомами лишь на определенных частотах. Неподходящие же частоты просто проходят мимо, что решает вопрос о бесконечной энергии необходимого уравнения.

Абсолютно черное тело - это тело, для которого поглощательная способность тождественно равна единице для всех частот или длин волн и для любой температуры, т.е.:

Из определения абсолютно черного тела следует, что оно должно поглощать все падающее на него излучение.

Понятие "абсолютно черное тело" - это модельное понятие. В природе абсолютно черных тел не существует, но можно создать устройство, являющееся хорошим приближением к абсолютно черному телу - модель абсолютно черного тела .

Модель абсолютно черного тела - это замкнутая полость с маленьким, по сравнению с ее размерами, отверстием (рис. 1.2). Полость изготавливают из материала, достаточно хорошо поглощающего излучение. Излучение, попавшее в отверстие, прежде чем выйти из отверстия, многократно отражается от внутренней поверхности полости.

При каждом отражении часть энергии поглощается, в результате из отверстия выходит отраженный поток dФ", являющийся очень малой частью попавшего в него потока излучения dФ. В результате поглощательная способность отверстия в полости будет близка к единице.

Если внутренние стенки полости поддерживать при температуре Т, то из отверстия будет выходить излучение, свойства которого будут очень близки к свойствам излучения абсолютно черного тела. Внутри полости это излучение будет находиться в термодинамическом равновесии с веществом полости.

По определению плотности энергии, объемная плотность энергии w(Т) равновесного излучения в полости - это:

где dЕ - энергия излучения в объеме dV. Спектральное распределение объемной плотности дается функциями u(λ,T) (или u(ω,T)), которые вводятся аналогично спектральной плотности энергетической светимости ((1.6) и (1.9)), т.е.:

Здесь dw λ и dw ω - объемная плотность энергии в соответствующем интервале длин волн dλ или частот dω.

Закон Кирхгофа утверждает, что отношение испускательной способности тела ((1.6) и (1.9)) к его поглощательной способности (1.14) одинаково для всех тел и является универсальной функцией частоты ω (или длины волны λ) и температуры Т, т.е.:

Очевидно, что поглощательная способность a ω (или a λ ) для разных тел разная, то из закона Кирхгофа следует, что чем сильнее тело поглощает излучение, тем сильнее оно должно это излучение испускать. Так как для абсолютного черного тела a ω ≡ 1 (или a λ ≡ 1), то отсюда следует, что в случае абсолютночерного тела:

Иными словами, f(ω,T) либо φ(λ,T), есть не что иное как, спектральная плотность энергетической светимости (или испускательная способность) абсолютно черного тела.

Функция φ(λ,T) и f(ω,T) связаны со спектральной плотностью энергии излучения абсолютно черного тела следующими соотношениями:

где c - скорость света в вакууме.

Схема установки для опытного определения зависимости φ(λ,T) приведена на рисунке 1.3.

Излучение испускается из отверстия замкнутой полости, нагретой до температуры Т, затем попадает на спектральный прибор (призменный или решеточный монохроматор), который выделяет излучение в интервале частот от λ до λ + dλ. Это излучение попадает на приемник, который позволяет измерить падающую на него мощность излучения. Поделив эту приходящуюся на интервал от λ до λ + dλ мощность на площадь излучателя (площадь отверстия в полости!), мы получим значение функции φ(λ,T) для данной длины волны λ и температуры Т. Полученные экспериментальные результаты воспроизведены на рисунке 1.4.

Итоги лекции N 1

1. Немецкий физик Макс Планк в 1900 г. выдвинул гипотезу, согласно которой электромагнитная энергия излучается порциями, квантами энергии. Величина кванта энергии (см. (1.2):

ε = hv ,

где h=6,6261·10 -34 Дж·с - постоянная Планка, v - частота колебаний электромагнитной волны, излучаемой телом.

Эта гипотеза позволила Планку решить проблему излучения абсолютно черного тела.

2. А Эйнштейн, развивая понятие Планка о квантах энергии ввел в 1905 г. понятие "квант света" или фотон. Согласно Эйнштейну квант электромагнитной энергии ε = hv движется в виде фотона, локализованного в малой области пространства. Представление о фотонах позволило Эйнштейну решить проблему фотоэффекта.

3. Английский физик Э. Резерфорд, основываясь на экспериментальных исследованиях, проведенных в 1909-1910 гг., построил планетарную модель атома. Согласно этой модели в центре атома расположено очень маленькое ядро (r я ~ 10 -15 м), в котором сосредоточена почти вся масса атома. Заряд ядра положителен. Отрицательно заряженные электроны движутся вокруг ядра наподобие планет солнечной системы по орбитам, размер которых ~ 10 -10 м.

4. Атом в модели Резерфорда оказался неустойчивым: согласно электродинамике Максвелла электроны, двигаясь по круговым орбитам, должны непрерывно излучать энергию, в результате чего за время ~ 10 -8 с они должны упасть на ядро. Но весь наш опыт свидетельствует о стабильности атома. Так возникла проблема стабильности атома.

5. Решил проблему стабильности атома в 1913 г. датский физик Нильс Бор на основе выдвинутых им двух постулатов. В теории атома водорода, развитой Н. Бором, существенную роль играет постоянная Планка.

6. Тепловым называется электромагнитное излучение, испускаемое веществом за счет его внутренней энергии. Тепловое излучение может находиться в термодинамическом равновесии с окружающими телами.

7. Энергетическая светимость тела R - это отношение энергии dE, испускаемой за время dt поверхностью dS по всем направлениям, к dt и dS (см. (1.5)):

8. Спектральная плотность энергетической светимости r λ (или испускательная способность тела) - это отношение энергетической светимости dR, взятой в бесконечно малом интервале длин волн dλ, к величине dλ (см. (1.6)):

9. Поток излучения Ф - это отношение энергии dЕ, переносимой электромагнитным излучением через какую-либо поверхность ко времени переноса dt, значительно превышающему период электромагнитных колебаний (см. (1.13)):

10. Поглощательная способность тела a λ - это отношение поглощаемого телом потока излучения dФ λ " в интервале длин волн dλ к падающему на него потоку dФ λ в том же интервале dλ, (см. (1.14):

11. Абсолютно черное тело - это тело, для которого поглощательная способность тождественно равна единице для всех длин волн и для любой температуры, т.е.

Абсолютно черное тело - это модельное понятие.

12. Закон Кирхгофа утверждает, что отношение испускательной способности тела r λ к его поглощательной способности а λ одинаково для всех тел и является универсальной функцией длины волны λ (или частоты ω) и температуры Т (см. (1.17)):


ЛЕКЦИЯ N 2

Проблема излучения абсолютно черного тела. Формула Планка. Закон Стефана-Больцмана, закон Вина

§ 1. Проблема излучения абсолютно черного тела . Формула Планка

Проблема излучения абсолютно черного тела состояла в том, чтобы теоретически получить зависимость φ(λ,Т) - спектральную плотность энергетической светимости абсолютно черного тела.

Казалось, что ситуация ясна: при заданной температуре Т молекулы вещества излучающей полости имеют максвелловское распределение по скоростям и излучают электромагнитные волны в соответствии с законами классической электродинамики. Излучение находится в термодинамическом равновесии с веществом, значит для нахождения спектральной плотности энергии излучения u(λ,T) и связанной с ней функции φ(λ,Т) можно использовать законы термодинамики и классической статистики.

Однако, все попытки теоретиков получить на основе классической физики закон излучения абсолютно черного тела потерпели неудачу.

Частичный вклад в решение этой проблемы внесли Густав Кирхгоф, Вильгельм Вин, Иозеф Стефан, Людвиг Больцман, Джон Уильям Релей, Джеймс Хонвуд Джинс.

Проблема излучения абсолютно черного тела была решена Максом Планком. Для этого ему пришлось отказаться от классических представлений и сделать предположение о том, что заряд, совершающий колебания с частотой v , может получать или отдавать энергию порциями, или квантами.

Величина кванта энергии в соответствии с (1.2) и (1.4):

где h - постоянная Планка; v - частота колебаний электромагнитной волны, излученной колеблющемся зарядом; ω = 2πv - круговая частота.

На основе представления о квантах энергии М. Планк, используя методы статистической термодинамики, получил выражение для функции u(ω,Т), дающей распределение плотности энергии в спектре излучения абсолютного черного тела:

Вывод этой формулы будет дан в лекции N 12, § 3 после того, как мы познакомимся с основами квантовой статистики.

Для перехода к спектральной плотности энергетической светимости f(ω,Т) запишем вторую формулу (1.19):

Используя это соотношение и формулу Планка (2.1) для u(ω,T), получим, что:

Это и есть формула Планка для спектральной плотности энергетической светимости f(ω,T) .

Теперь мы получим формулу Планка для φ(λ,Т).Как мы знаем из (1.18), в случае абсолютно черного тела f(ω,T) = r ω , а φ(λ,Т) = r λ .

Связь между r λ и r ω дает формула (1.12), применяя ее мы получим:

Здесь мы аргумент ω функции f(ω,Т) выразили через длину волны λ. Подставляя сюда формулу Планка для f(ω,Т)из (2.2), получим формулу Планка для φ(λ,Т) - спектральной плотности энергетической светимости в зависимости от длины волны λ:

График этой функции хорошо совпадает с экспериментальными графиками φ(λ,Т) для всех длин волн и температур.

Это и означает, что проблем излучения абсолютно черного тела решена.

§ 2. Закон Стефана-Больцмана и закон Вина

Из (1.11) для абсолютно черного тела, когда r ω = f(λ,Т), получим энергетическую светимость R(T), интегрируя функцию f(ω,Т) (2.2) во всем интервале частот.

Интегрирование дает:

Введем обозначение:

тогда выражение для энергетической светимости R примет следующий вид:

Это и есть закон Стефана-Больцмана .

М. Стефан на основе анализа опытных данных пришел в 1879 г. к выводу, что энергетическая светимость любого тела пропорциональна четвертой степени температуры.

Л. Больцман в 1884 г. нашел из термодинамических соображений, что такая зависимость энергетической светимости от температуры справедлива лишь для абсолютно черного тела.

Постоянная σ носит название постоянной Стефана-Больцмана . Ее экспериментальное значение:

Вычисления по теоретической формуле дают для σ результат очень хорошо согласующийся с экспериментальным.

Отметим, что графически энергетическая светимость равна площади, ограниченной графиком функции f(ω,Т), это иллюстрирует рисунок 2.1.

Максимум графика спектральной плотности энергетической светимости φ(λ,Т) при повышении температуры смещается в область более коротких волн (рис. 2.2). Для нахождения закона, по которому происходит смещение максимума φ(λ,Т) в зависимости от температуры, надо исследовать функцию φ(λ,Т) на максимум. Определив положение этого максимума, мы получим закон его перемещения с изменением температуры.

Как известно из математики, для исследования функции на максимум надо найти ее производную и приравнять к нулю:

Подставив сюда φ(λ,Т) из (1.23) и взяв производную, получим три корня алгебраического уравнения относительно переменной λ. Два из них (λ = 0 и λ = ∞) соответствуют нулевым минимумам функции φ(λ,Т). Для третьего корня получается приближенное выражение:

Введем обозначение:

тогда положение максимума функции φ(λ,Т) будет определятся простой формулой:

Это и есть закон смещения Вина .

Он назван так в честь В. Вина, теоретически получившим в 1894 г. это соотношение. Постоянная в законе смещения Вина имеет следующее численное значение:

Итоги лекции N 2

1. Проблема излучения абсолютно черного тела состояла в том, что все попытки получить на основе классической физики зависимость φ(λ,Т) - спектральную плотность энергетической светимости абсолютно черного тела потерпели неудачу.

2. Эту проблему решил в 1900 г. М. Планк на основе своей гипотезы квантов: заряд, совершающий колебания с частотой v , может получить или отдавать энергию порциями или квантами. Величина кванта энергии:

здесь h = 6,626 ·10 -34 - постоянная Планка, величина Дж·с также называется постоянной Планка ["аш" с чертой], ω - круговая (циклическая) частота.

3. Формула Планка для спектральной плотности энергетической светимости абсолютно черного тела имеет следующий вид (см. (2.4):

здесь λ - длина волны электромагнитного излучения, Т - абсолютная температура, h - постоянная Планка, с - скорость света в вакууме, k - постоянная Больцмана.

4. Из формулы Планка следует выражение для энергетической светимости R абсолютно черного тела:

которое позволяет теоретически вычислить постоянную Стефана-Больцмана (см. (2.5)):

теоретическое значение которой хорошо совпадает с ее экспериментальным значением:

в законе Стефана-Больцмана (см.(2.6)):

5. Из формулы Планка следует закон смещения Вина, определяющий λ max - положение максимума функции φ(λ,Т) в зависимости от абсолютной температуры (см. (2.9):

Для b - постоянной Вина - из формулы Планка получается следующее выражение (см. (2.8)):

Постоянная Вина имеет следующее значение b = 2,90 ·10 -3 м·К.


ЛЕКЦИЯ N 3

Проблема фотоэффекта . Уравнение Эйнштейна для фотоэффекта

§ 1. Проблема фотоэффект а

Фотоэффект - это испускание электронов веществом под действием электромагнитного излучения.

Такой фотоэффект называют внешним. Именно о нем мы будем говорить в этой главе. Есть еще и внутренний фотоэффект . (см. лекцию 13, § 2).

В 1887 г. немецкий физик Генрих Герц обнаружил, что ультрафиолетовый свет, освещающий отрицательный электрод в разряднике, облегчает прохождение разряда. В 1888-89 гг. русский физик А. Г. Столетов занимается систематическим исследованием фотоэффекта (схема его установки приведена на рисунке). Исследования проводились в атмосфере газа, что сильно усложняло происходившие процессы.

Столетов обнаружил, что:

1) наибольшее воздействие оказывают ультрафиолетовые лучи;

2) сила тока возрастает с увеличением интенсивности света, освещающего фотокатод;

3) испущенные под действием света заряды имеют отрицательный знак.

Дальнейшие исследования фотоэффекта производились в 1900-1904 гг. немецким физиком Ф. Ленардом в наивысшем достигнутом в то время вакууме.

Ленарду удалось установить, что скорость вылетающих из фотокатода электронов не зависит от интенсивности света и прямо пропорционально его частоте . Так родилась проблема фотоэффекта . Объяснить результаты опытов Ленарда на основе электродинамики Максвелла было невозможно!

На рисунке 3.2 изображена установка, позволяющая детально изучать фотоэффект.

Электроды, фотокатод и анод , помещены в баллон, из которого откачан воздух. Свет на фотокатод подается через кварцевое окошко . Кварц, в отличие от стекла, хорошо пропускает ультрафиолетовые лучи. Разность потенциалов (напряжение) между фотокатодом и анодом измеряет вольтметр . Ток в цепи анода измеряется чувствительным микроамперметром . Для регулировки напряжения батарея питания подключена к реостату со средней точкой. Если движок реостата стоит против средней точки, подсоединенной через микроамперметр к аноду, то разность потенциалов между фотокатодом и анодом равна нулю. При смещении движка влево, потенциал анода становится отрицательным относительно катода. Если движок реостата сдвигать вправо от средней точки, то потенциал анода становится положительным.

Вольт-амперная характеристика установки по изучению фотоэффекта позволяет получить информацию об энергии электронов, испускаемых фотокатодом.

Вольт-амперная характеристика - это зависимость фототока i от напряжения между катодом и анодом U. При освещении светом, частота v которого достаточна для возникновения фотоэффекта, вольт-амперная характеристика имеет вид графика, изображенного на рис. 3.3:

Из этой характеристики следует, что при некотором положительном напряжении на аноде фототок i достигает насыщения. При этом все электроны, испущенные фотокатодом в единицу времени, попадают за это же время на анод.

При U = 0 часть электронов долетает до анода и создает фототок i 0 . При некотором отрицательном напряжении на аноде - U зад - фототок прекращается. При этом значении напряжения максимальная кинетическая энергия фотоэлектрона у фотокатода (mv 2 max)/2 полностью расходуется на совершение работы против сил электрического поля:

В этой формуле m e - масса электрона; v max - его максимальная скорость у фотокатода; e - абсолютное значение заряда электрона.

Таким образом, измерив задерживающее напряжение U зад, можно найти кинетическую энергию (и скорость электрона) сразу после его вылета из фотокатода.

Опыт показал, что

1) энергия вылетевших из фотокатода электронов (и их скорость) не зависела от интенсивности света! При изменении частоты света v меняется и U зад, т.е. максимальная кинетическая энергия электронов, покидающих фотокатод;

2) максимальная кинетическая энергия электронов, у фотокатода, (mv 2 max)/2, прямо пропорциональна частоте v света, освещающего фотокатод.

Проблема , как и в случае с излучением абсолютно черного тела, состояла в том, что теоретические предсказания, сделанные для фотоэффекта на основе классической физики (электродинамики Максвелла), противоречили результатам опытов. Интенсивность света I в классической электродинамике является плотностью потока энергии световой волны. Во-первых, с этой точки зрения, энергия, передаваемая световой волной электрону, должна быть пропорциональна интенсивности света. Опыт не подтверждает это предсказание. Во-вторых, в классической электродинамике нет никаких объяснений прямой пропорциональности кинетической энергии электронов, (mv 2 max)/2, частоте света v.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

государственное образовательное учреждение высшего профессионального образования

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

Реферат по дисциплине

«Техническая оптика»

тема: «Абсолютно черное тело»

Выполнил: студент гр. ОБДзс-07

Кобаснян Степан Сергеевич Проверил: преподаватель дисциплины

Сидорова Анастасия Эдуардовна

г.Тюмень 2009г.

Абсолютно чёрное тело - физическая абстракция, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Модель абсолютно черного тела

Законы излучения абсолютно чёрного тела

Классический подход

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики.

Первый закон излучения Вина

В 1893 году Вильгельм Вин, исходя из представлений классической термодинамики, вывел следующую формулу:

Из первой формулы Вина можно вывести закон смещения Вина (закон максимума) и закон Стефана-Больцмана, но нельзя найти значения постоянных, входящих в эти законы.

Исторически именно первый закон Вина назывался законом смещения, но в настоящее время термином "закон смещения Вина" называют закон максимума.

Второй закон излучения Вина

Опыт показывает, что вторая формула Вина справедлива лишь в пределе высоких частот (малых длин волн). Она является частным конкретным случаем первого закона Вина.

Позже Макс Планк показал, что второй закон Вина следует из закона Планка для больших энергий квантов, а также нашёл постоянные C 1 и C 2 . С учётом этого, второй закон Вина можно записать в виде:

Закон Релея - Джинса

Эта формула предполагает квадратичное возрастание спектральной плотности излучения в зависимости от его частоты. На практике такой закон означал бы невозможность термодинамического равновесия между веществом и излучением, поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названо ультрафиолетовой катастрофой.

Тем не менее закон излучения Рэлея - Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка, которая будет совпадать с формулой Рэлея - Джинса при .

Этот факт является прекрасной иллюстрацией действия принципа соответствия, согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Закон Планка

Зависимость мощности излучения чёрного тела от длины волны

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка :

где I (ν)d ν - мощность излучения на единицу площади излучающей поверхности в диапазоне частот от ν до ν + d ν.

Эквивалентно,

,

где u (λ)d λ - мощность излучения на единицу площади излучающей поверхности в диапазоне длин волн от λ до λ + d λ.

Закон Стефана - Больцмана

Общая энергия теплового излучения определяется законом Стефана - Больцмана :

где j - мощность на единицу площади излучающей поверхности, а

Вт/(м²·К 4) - постоянная Стефана - Больцмана .

Таким образом, абсолютно чёрное тело при T = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Закон смещения Вина

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина :

где T - температура в кельвинах, а λ max - длина волны с максимальной интенсивностью в метрах.

Видимый цвет абсолютно чёрных тел с разной температурой представлен на диаграмме.

Чернотельное излучение

Электромагнитное излучение, находящееся в термодинамическом равновесии с абсолютно чёрным телом при данной температуре (например, излучение внутри полости в абсолютно чёрном теле), называется чернотельным (или тепловым равновесным) излучением. Равновесное тепловое излучение однородно, изотропно и неполяризовано, перенос энергии в нём отсутствует, все его характеристики зависят только от температуры абсолютно чёрного тела-излучателя (и, поскольку чернотельное излучение находится в тепловом равновесии с данным телом, эта температура может быть приписана излучению). Объёмная плотность энергии чернотельного излучения равна , его давление равно . Очень близко по своим свойствам к чернотельному так называемое реликтовое излучение, или космический микроволновой фон - заполняющее Вселенную излучение с температурой около 3 К.

Цветность чернотельного излучения

Примечание: Цвета даны в сравнении с рассеянным дневным светом (D 65). Реально воспринимаемый цвет может быть искажён адаптацией глаза к условиям освещения.

Абсолютно чёрное тело - физическая абстракция, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Наиболее чёрные реальные вещества, например, сажа, поглощают до 99 % падающего излучения (т. е. имеют альбедо, равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди тел Солнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладает Солнце. Термин был введён Густавом Кирхгофом в 1862.

****** нарисовать модель тела.******

Модель абсолютно черного тела

Абсолютно чёрных тел в природе не существует, поэтому в физике для экспериментов используется модель. Она представляет из себя замкнутую полость с небольшим отверстием. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Но при нагревании этой полости у неё появится собственное видимое излучение.

Первый закон излучения Вина

В 1893 году Вильгельм Вин.

Первая формула Вина справедлива для всех частот. Любая более конкретная формула (например, закон Планка) должна удовлетворять первой формуле Вина.

Второй закон излучения Вина

В 1896 году Вин на основе дополнительных предположений вывел второй закон:

вторая формула Вина справедлива лишь в пределе высоких частот (малых длин волн). Она является частным конкретным случаем первого закона Вина.

Закон Релея - Джинса

Попытка описать излучение абсолютно чёрного тела исходя из классических принципов термодинамики и электродинамики приводит к закону Релея - Джинса:

На практике такой закон означал бы невозможность термодинамического равновесия между веществом и излучением, поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названо ультрафиолетовой катастрофой.

Закон Планка определяет Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты

Закон Стефана - Больцмана определяет общую энергию теплового излучения определяется законом

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина:

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36°C (309 К) лежит на длине волны 9400 нм (в инфракрасной области спектра).

 

Возможно, будет полезно почитать: